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Abstract - Comparison is made between an earlier analysis by the author and more recent theoretical 
investigations of mixed convection in an isothermal horizontal tube. It is again substantiated that the 
primary parameter for determining the bulk-temperature rise under buoyancy-dominated conditions is 
given by the fourth root of the Rayleigh number divided by the Graetx number. The theory is shown to 
correlate existing data with an RMS deviation of ‘v 8% for water and Ho/, for ethyl alcohol and 80120 glycerol 
water. Al~ough derived for a large-Pmndtl-num~r fluid, it is found that the theory can equalfy well describe 

available data in air. 

NOMENCLATURE 

pipe radius ; 
specific heat ; 
gravity ; 
Grashof number, @(AT(a3/v2; 
thermal conductivity; 
pipe length ; 
pressure; 
Prandtl number, &,/k; 
heat flux at wall; 
radial coordinate; 
Reynolds number, Wa/v; 
average of bulk temperatures at inlet and 
outlet ; 
bulk temperature; 
core temperature relative to T*, see (2.11); 
uniform tem~rat~e at inlet; 
uniform wall temperature; 
radial velocity component ; 
azimuthal velocity component ; 
= (v/u) (Gr/Pr)‘” ; 
= (v/u) (z/&e) (Gr/Pr2’3). 
axial velocity component I 
average axial velocity; 
axial coordinate. 

Greek symbols 

thermal diffusivity; 
coefficient of volumetric thermal expansion; 
= J(nz); 
= a,‘( GrPr)“4 ; 
E T, - T,; 
bulk temperature rise; 
= (z/~Re)~(Gr/Pr”~) ; 
= (a - r)/S,; 
= v/W, ‘Viscous length”; 
dynamic viscosity; 
kinematic viscosity ; 
=z/(aRePr); 
fluid density ; 
= ( GrPr)“4< * 1 

#* azimuthal coordinate measured from verti- 
cally downwards (upwards) in case of heated 
(cooled) wall; 

X, = (a - r)/a; 
V+> streamfunction; 

0, see following (2.7). 

Subscripts 

4 evaluated at T, ; 
4 buoyancy-induced ; 
C, core ; 
97 experimental; 

F, forced-flow induced ; 
L evaluated at z = L; 

W, evaluated at wall. 

1. INTRODIJCIION 

ALTHOUGH it appears to have been the first theoretical 
analysis of mixed convection in an isothermal horizon- 
tal tube, and although it correlated much of the 
available data better than the best empirical cor- 
relations, [l] seems to have received a rather “mixed” 
response, at best. For example, (i) in their finite- 
difference investigation of this problem, Ou and Cheng 
[2] note the similarity between their own predictions 
and those in [I] but indicate that a direct comparison 
cannot be made since the entrance flow conditions are 
different in the two cases (in fact, the main result in [l] 
is independent of the entrance flow condition, and, as 
will be shown in Section 2, when the results in [2] are 
resealed in terms of the variables in [l], the various 
curves in [2] collapse into a single curve which 
essentially coincides with the theoretical curve of Cl]); 
(ii) in his detailed perturbation analysis of the entrance 
ffow region for this problem, Yao [3] summarily 
dismisses the analysis in [I] on the basis that it neglects 
the interaction between the core flow and the 
boundary-layer flow (in fact, the analysis for the “near 
region” in [I] was concerned with following the effect 
of buoyancy upon the heat transfer and not upon the 
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flow structure of the core; nevertheless, Section 3 now 
indicates how the analysis in [I] could be extended to 

include the leading effect of buoyancy upon the core 
flow, thus serving as a large-Prandtl-number asymp- 

tote for the results in [3]); (iii) in their summary 
discussion of this problem area, admittedly with no 

claim of being comprehensive, Shah and London [4] 
cite only the empirical correlation developed in [5] 

(even though the theoretical result in [l] correlates the 
rather extensive data in [5-73 better than any of the 
empirical correlations developed in any of these 
investigations). 

The purpose of the present paper, then, is to 
elucidate and further substantiate the theory de- 
veloped in [l]. This is done on the one hand by 

showing in Sections 2 and 3 how [1] can be related to 

the results in [2] and [3], respectively. On the other 
hand, it is shown in Section 4 that a composite result, 

based upon the theory of [l] and the resealed results 
from [2], correlates the data in [5-71 with an RMS 

deviation of 8% for water and 15% for ethyl alcohol 

and 80/20 glycerol water. In addition, it is found that 
although the theory has been derived for a large- 
Prandtl-number fluid, it can equally well describe the 

heat-transfer results in air reported in [8]. 

2. COMPARISON OF THE RESULTS OF OU AND 

CHENG [2] WITH [l] 

Although the numerical simulation by Ou and 
Cheng [2] is for a fully-developed inlet velocity 

whereas the near-region analysis in [l] is for a uniform 

inlet velocity, the major results in [l], namely the 
expansions for the intermediate and far-intermediate 
regions, can still be applied when the inlet flow is fully 

developed. In this case, provided Pr > 0( 1) and GvPr 

> O(l), the bulk-temperature rise in the region 

0{(GrPr)-3’4} < 5 < 0{(GrPr)-m”4} (2.1) 

is given by the results in Section 2(d) of [l], namely 

ATb = AT f c,cr” (2.2) 
“=I 

where, for n = l-6, 

C, = 0.87052, -0.47363, 0.20615, 

-0.07851, 0.02734, -0.00892 (2.3) 

and Q (or “Ed”, in the notation of [1]) is defined as : 

z (GrPr)“4< (2.4) 

which, in effect, is the fourth root of the Rayleigh 
number divided by the Graetz number. 

That is, according to the theory developed in [ 11, CT is 
the primary variable for determining the bulk- 
temperature rise for mixed convection in an isother- 
mally heated or cooled horizontal tube. Accordingly, 
in making comparison with the finite-difference calcu- 
lations of Ou and Cheng [2], it is appropriate to 
rescale their results in terms of o. In this regard, it is 

noted that Fig. 7 of [2] presents results for (AT -~ 
AT&/AT vs 5/4 (in present notation) for various values 
of GrPr, namely 5 x 103, 104, 5 x 104, lo”, 5 x 10’ 
and 106. A replotting of various points in terms of 

ATJAT vs 0 gives the results in Fig. 1. That is, the 
results for different GrPr collapse into one curve which 

is well represented by the results of [ 11. In particular. 

the solid curve in Fig. 1 corresponds to the first six 
terms in (2.2) whereas the dashed curve corresponds to 
an empirical extrapolation, namely 

AT, 
___ = 0.543 + 0.315(a - 1) 
AT 

- O.l32(a - 1)’ + O.O28(a - 1)’ (2.5) 

which was obtained in [1] for 1 < 0 < 2.5 based upon 

comparison with existing data. 
The agreement indicated in Fig. 1 between the 

results in [l] and [2] is rather remarkable, typically 

being within a few per cent. Further, it is noted that the 
poorer agreement for the smaller GrPr results at the 

smaller values of 0 is due to the forced-convective effect 
of the near region where [ is still the controlling 

parameter. On the other hand, although the forced 
convection will reappear as the dominant heat-transfer 
mechanism as ATb approaches AT, with 5 again 

becoming the pertinent variable, the scaled results 
from [2] in Fig. 1 indicate that a is still the controlling 

parameter when ATb is as large as ~98% of AT. 

At this point, it is suggested that the more casual 

reader skip to Section 4 since the remainder of this 
section and the following section are concerned with 

more detailed comparisons between [1] and [2] and 

between [l] and [3], respectively. In particular, in 
making comparison between [l] and [2], it should be 
noted that the theoretical result (2.2), from [l], is based 
upon a model in which the azimuthal velocity com- 

ponent is of order 

v =!I GY “2 
R 

i ) a Pr, 
(2.6) 

in both the thermal boundary layer, which is of order 

a/(GrPr)“4 in thickness, and in the core. Further, it is 
assumed that the core is not thermally stratified, i.e. as 
the temperature rise in the core becomes of O(AT), the 
temperature variation across the core remains of order 
AT/(GrPr)1!4. 

For comparison, it is noted that the results at GrPr 
= lo5 in Fig. 6(a) of [Z] indicate that the angular 
velocity, non-dimensionalized with respect to a/a, is as 
large as 100 to 200 in both the core and thermal 
boundary layer in the region 5 x 10e4 5 514 5 3 x 
1O-3 (“z” in [Z] corresponding to 514, in present 
notation). This is to be compared with V, = (v/a) 
(Gr/Pr)“’ = (a/a)(GrPr)‘,2 z 300 a/a, indicating that 
V, is indeed the characteristic speed in this domain. 
On the other hand, the corresponding results for the 
temperature field in Fig. 3 of [2] indicate that the core 
does become thermally stratified but that this does not 
become significant until (14 - IO- ‘. where, according 
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FIG. 1. Resealed results from Fig. 7 of [2] for GP = 5 x lo3 (+), lo4 (O), 5 x lo4 (A), 10’ (cl), 5 x 10’ (V) 
and IO6 (0). Solid curve corresponds to first six terms in (2.2); dashed curve given by (2.5). 

to Fig. 6(a), the secondary velocity in the core has 
already diminished to x4Oa/a. In this regard, it is 
noted that it is clear on physical grounds that thermal 
stratification cannot become significant until AT, = 
O(AT); further, by means of a global energy balance 
with 4, based upon k AT(G~~r~1’4/~, it follows that 
AT, = O(AT) where 5 is of order (GrPr)-‘i4 [i.e. cr = 
O(l)] which, for GrPr = IO’, gives r/4 =.lO-‘. 

The picture which therefore arises from the results in 
[Z] is that, in agreement with the model in [l], the 
buoyancy-dominated structure is first characterized 
by a non-stratified core with angular velocities of 
O(VB) in both the core and thermal boundary layer. 
However, unlike the model in [I], the results in [2] 
indicate the development of significant thermal strati- 
fication in the core when AT, becomes of O(AT). 
Accordingly, one would expect good agreement be- 
tween [l] and [2] when ATJAT is small. However, the 
fact that the non-stratified theory of [1] still describes 
the results in [2] when AT,/AT is as large as 540/ as 
shown in Fig. 1, indicates that stratification does not 
have such a drastic effect upon the global heat transfer. 
In fact, this point was already surmised in [l] where it 
was noted that, for the uniform-heat-flux case, the 
stratified solution of Siegwarth et al. [9] for the 
buoyancy-dominated, fully-developed flow region 
gives a circumferentially averaged Nusselt number 
which differs by only 10% from the corresponding non- 
stratified solution. 

As a further illustration of the relationship between 
El] and [2], it is noted that the results in [l] can be 
readily extended to a determination of the secondary 
velocity in the viscous core, corresponding to the 
situation in [2] prior to significant stratification. As 
noted in [I], the neglect of inertial effects in the core 
requires that Gr < O(Pr). In this case, vB and uB in the 

core are related to a streamfunction, 11/B, which is 
biharmonic and satisfies evident symmetry conditions 
along 4 = 0, x together with the conditions 

#a = 0, - 2 = I/Bc0*‘2sin1’3+f‘(rB) at r = a 

(2.7) 

where w = I$ sin1j3 t dt (corresponding to “<* in [l]) 
andf(q) corresponds to the similarity solution for the 
streamfunction in the inner layer, such thatf’(co) = 
1.02136, as given in (2.24) of [l]. That is, the in- 
homogeneous boundary condition in (2.7) corres- 
ponds to the non-zero asymptotic value of vB at the 
edge of the inner layer. 

A series solution for Jla can be expressed as 

+B = Vd z 
“=, 

c,,(b>‘(l - $)sinn4 (2.8) 

where 

w112 sin*j3 # sin nQt d& (2.9) 

A resulting plot for $a/( I’@), based upon the first ten 
terms in (2.8), is shown in Fig. 2. In particular, these 
results indicate that 

v Gr ii2 
($&3x = 0.25VBa = 0.25 a >I 

0 

x a = 0.25~(Gr~~~~‘2 (2.10) 

where a is the thermal diffusivity. For comparison, it is 
noted that the results in Figs. 2 and 3 of Ou and Cheng 
[2] indicate a $,,, of k 45 c1 and 70 a, respectively, at 
GrPr = 5 x lo4 and 10’ whereas (2.10) gives 
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FE 2. Solution for $$(V+) in viscous core as given by first 
ten terms in (2.8). 

corresponding values of 56 u and 19 a, in reasonable 
agreement. That is, as discussed above, the calcu- 
lations in [2] indicate that the maxims secondary 
flow in the core occurs prior to significant stratifi- 
cation, thus the good correlation of +,,X with the 
present non-stratified theory. Further, in comparing 
the contours in Fig. 2 with these in Figs. 2 and 3 of [2]. 
it should be noted that the plots in [2] are shown for 
the cooled-wall case whereas that in Fig. 2 of the 
current work is for the heated-wall case. Hence, the 
results in [2] indicate that, for the heated-wall case, the 
eye of the vortex will lie in the upper quadrant prior to 
stratification, in agreement with Fig. 2, but then 
become weaker and move into the lower quadrant as 
the thermal stratification becomes substantial. 

Finally, it should be noted that the results in [2] at 
GrPr = 10’ could be interpreted as indicating a rather 
limited overlap region in which there is @AT) stratifi- 
cation in part of the core together with Q(V,) secon- 
dary velocities [e.g. the region 10W3 5 514 5 2 x 10s3 
where the results indicate significant stratification in 
the upper (lower) part of core for the heated (cooled) 
wall case] ; it would then follow that the interaction 
between this secondary velocity and core temperature 
would give rise to a thermal-convection effect of order 
VB AT/a = (VAT/~‘) (Gr/Pr)“2. For comparison, 
with qW being of order kA~~Gr~r)lt4/a, it follows that 
w dT,/dz is on the order of (v AT/a’) (Gr1’4/Pr3”), 
which is seen to be smaller than the above convection 
term by order (GrPr)- . II4 Indeed, this is the very 

reason that, for the fully-developed buoyancy- 
dominated region in the uniform-heat-flux case, one 
cannot have @AT) stratification together with O(Vx) 
secondary velocities, as was shown by Siegwarth et al. 
[9]. In the present case, however, since the stratifi- 
cation is developing with z, we have that the tempera- 
ture distribution in the core is of the form 

Hence, by requiring that wST,:iz balance the con- 
vection due to the secondary flow. it follows that 
2T,ji% should be on the order of (AT;‘(aPrRe)) 
(GrPr)“‘. In particular, from Fig. 5 of [2] it is noted 
that, e.g. at r/u = 0.6 and 4 = x. the change in T t 7:. 
between s/4 = IO- 3 and 2 x 10e3 IS -Oh 7AT 3 
whereas, from Fig. 7 of [Z], the corresponding change 
in Tb is seen to be = 0.03 AT; hence, for this r/a and 4, 
the average value of aT,/ib between the above two 
values of ; is approximatei~~ 

c?T .“...“! AT 5 -- 0.24 _-... = 60 1’. 
8: (10-3) (4aPrRe) uPrRe 

where the 60 is to be compared with (105)’ z z 300, 
indicating marginal agreement. In fact, the thermal 
convection due to the secondary flow has been over- 
estimated in the above since the secondary velocity at 
&‘4 = 2 x 1OF3 and r/u = 0.6, # = n is only a smali 
fraction of V,, as can be seen from the streamline 
pattern in Fig. 3 of [2] together with the above 
discussion of Fig. 6(a). 

Nevertheless, the above indicates at least a tendency 
for XFJ8z to be on the order of (ATjjaPrRc)) (GrPf)’ ‘2’ 
In turn, noting that the buoyancy arising from T, in the 
core can only be balanced hydrostatically, it follows 
that the associated pressure, pC, will be on the order of 
~g~a~~. Hence, with the axial gradient of pC being 
balanced by viscous diffusion of W, it follows that the 
corresponding induced axial velocity component will 
be such that 

i.e. A+vC will be on the order of ~(GrPr)3i2/(R~~r~z, 
where this effect should be most evident in the top 
(bottom) of the core in the case of a heated (cooled) 
wall. Further, it is noted that this pressure gradient 
would tend to be adverse in this region of the core. [It 
should also be pointed out that the above result for 
Aw, is the same as obtained by Siegwarth et al. [9] for 
the uniform-heat-flux case except for an additional 
(GrPr) “4 in the numerator due to dT,/az being order 
(GrPr)‘i4 larger than dT,,/dz.] Accordingly, it seems 
that the simplification in [2] of neglecting any change 
in w due to buoyancy would require that 
(GrPr)3’2/(RePr)2 be small. However, at least as re- 
gards heat-transfer predictions, it appears that this 
constraint is unnecessarily restrictive since the exper- 
imental data cited in Section 4, which is well described 
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by the theory of [1] and [2], corresponds to values of 
the above parameter as large as 4000. Even in terms of 
the less restrictive criterion of [9], it is noted that the 
data corresponds to values of (GrPr)Si4/(RePr)2 as 
large as 125. 

3. RELATING THE WORK OF YAO 133 TO [l] 

Both [1] and [3] employ asymptotic expansion 
techniques to analyze mixed convection in an isother- 
mally heated or cooled horizontal pipe. In the former 
investigation, the expansion is for large Prandtl num- 
ber whereas the latter is for Pr of O(1); in both 
instances, the velocity is assumed to be uniform at the 
entry. Accordingly, the leading-order forced-Sow ve- 
locity boundary layer is given in both cases by the we& 
known Blasius solution for flow over a flat plate, with a 
boundary-layer thickness of order S = J(Lz) where 3, 
= v/W. In [l], due to the large-Prandtl-number 
assumption, the forced-flow thermal boundary layer is 
of order B/Pr1/3 in thickness, being imbedded within 
the Blasius boundary layer and being described by a 
suitably scaled Leveque solution. This forced-flow 
temperature distribution results in a buoyancy term 
which induces an angular velocity of O(p’,), where 

_Z viz \ Gr 
VgG- - -. 

a aRe \ I Pr213 

In turn, this buoyancy-induced flow (more specifically, 
the radial component thereof) convects the forced-flow 
temperature field and thus gives rise to a buoyancy- 
induced temperature which, in like manner, induces 
further flow. As shown in [l], this expansion for the 
buoyancy-induced flow and temperature proceeds in 
powers of &it where 

/ z l2 Gr 

In [3], on the other hand, due to Pr = O(l), the 
thermal boundary layer is of O(6) in thickness and the 
associated leading-order buoyancy-induced angular 
velocity is of order 

which is seen to agree with a, if Pr is G( 1). Rather than 
proceeding in powers of ei, as in [I], the interest in [3] 
is with determining the resulting buoyancy-indu~ 
flow in the core. If this had been done in [ 11, it would 
have required first determining the behavior of the 
buoyancy-induced flow in the velocity boundary layer, 
as is shown below. 

In particular, in the notation of Section 2(a) in [l), 
we would have 

ab, afh, a2vB, 
"Fx + UFx = -I$- (3.1) 

and 

subject to the conditions that 

un, = 0, va, = 2.0401 Vn sin C$ at x = 0 

% -0 asX--+co (3.3) 

where x = (a - r)i(s and the inhomogeneous condition 
in (3.3) arises from matching the asymptotic behavior 
of t$, at the outer edge of the thermal boundary layer, 
as given in (2.8) of [ 11. However, following Yao [3], the 
situation for ( )B, in the velocity boundary layer is 
more complicated due to the inertial term ae, aw,/& 
which gives rise to a ws, of O(vBz/a) and which, 
therefore, contributes a term to (3.2). That is, with wB, 
being governed by 

(3.4) 

subject to the conditions 

we, = 0 at x = 0, wa, N 0 as x --) 00 (3.5) 

and aw,,/az being added to (3.2), it follows that an 
appropriate representation is given by 

- . 
% = VBQp; smQI (3.6) 

-6 
ug, = V,,(@, -t- @, - +fl;)cos 4 (3.7) 

+% = i+cosCp (3.8) 

with @i(x) being governed by 

fI$;+&W; -F’QD; =o 

#i(O) = 0 = WI(W), cp;(O) = 2.0401 i 
(3.9) 

and @2&f by 

wy + pw; - 2F’Qi; + SF”@,z = -FV$ 
Q,(O) = 0 = W;(O) = W;(W) } (3.10) 

where F(X) corresponds to the well-known Blasius 
sofution, governed by 

F”‘+fFF”=O; ~(O)=O=~(O), 

F(co) = 1. (3.11) 

Numerical solution of the above results in 

W;(O) = - 1.1066, Q1(03) = 2.4507 (3.12) 

and 

W;(o) = 0.5855, &(co) = 1.8249. (3.13) 

In particuiar, the non-zero value of W;(O) indicates that 
WB, Will be Of O(?&- “‘z/a) in the thermal boundary 
layer, thus contributing a term of O(vBPr- In/a) to the 
continuity equation and hence justifying its neglect in 
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determining csl and usI in the inner layer, as was done 
in [l]. On the other hand, as x + X, 

where C, = 2.4507 + t (1.8249) = 7.0130. For 

comparison, it is noted that, in the present termi- 

nology, Yao obtains 

6 
% * 23~2/3,(fr2~3vB)-COS f#I as p+ % (3.15) 

a 

with B2 = 0.3158 for Pr = 10, thus giving a value for 
23/2fi,P,Ji3 of 4.146. This poor agreement with the 

above value for C, can, in fact, be attributed to the 

presence of higher-order terms in the large-prandtl- 
number expansion. In particular, by extending the 
analysis to these higher-order terms, it can be shown 

that 

C, = 7.0130 - 7.2220 Pr-.“3 + O(Pr-‘) (3.16) 

such that, as applied to Pr = 10, the first two terms in 

(3.16) result in a value of 3.661, which is seen to agree 
within about 10% of the value of 4.146 from Yao, as 

would be expected from the omitted O(Pr-‘) term in 
(3.16). 

Accordingly, for the large-Pr limit, one can make 

direct use of the core results obtained by Yao [3]. In 
the present notation, this becomes (for large z/u): 

6 
us, = C,?s+os~ (3.17) 

u 

L’,rJ, = -(.,1?,csin4 (3.18) 
a 

(3.19) 

such that the buoyancy-induced velocity in the r c$ 

plane is in the vertical direction (downwards in the 
heated-wall case, upwards in the cooled-wail case) and 
of magnitude C, P, 6/u. 

In summary, it is noted that the “near region” 

expansion in [l] and the expansion in [3] require that 

both s1 and S/a be small. That is, the expansions break 
down when either ci becomes O(l), i.e. ;/aRe = 
0(Pr1!6/Gr1’z), indicating that the natural convection 
has become a leading-order heat-transfer effect, or S/a 
= O(l), i.e. z/aRe = O(l), indicating that the viscous 
boundary layer has merged along the centerline. 

Accordingly, which of these conditions is met first 
depends upon whether Gr > 0(Prls3) or Gr < 

0(Pr”3). In the former case, the thermal boundary 

layer is buoyancy dominated in the region z/aRe > 

0(Pr”6/Gr”2) with its thickness being of order 

a/(GrPr)1’4 and the associated angular velocity being 
of order (v/a) (Gr/Pr)“2. On the other hand, if Gr < 

O(Pr1’3) then the thermal boundary layer remains 

forced-flow dominated in the region z/aRe > O(1) but 
is now imbedded within Poiseuille flow, in leading 

approximation, with the thickness of the thermal layer 
being of order a(z/aRePr)1’3. In this case, the natural 
convection will remain a smaller-order effect until the 

region where z/(aRe) = O(Pr”4/Gr3’4). However, if 
this region corresponds to z/(aRe) > O(Pr), i.e. if Gr < 
O(Pr-‘), then the forced-flow-dominated temperature 
field will have already become fully developed (T ^- 
T,), indicating that natural convection remains a 

smaller-order effect throughout if GrPr < O(l)+ as 

might be expected. 

In particular, then, for the case Gr < O(Pr’ “j, the 

results in (3.17) and (3.18) imply that, in the region 
zl(aRe) = 0( 1 ), the secondary velocities in the (viscous) 
core will be of the same order as in the thermal layer. 

By further extrapolation, the results of Yao suggest 
that the eventual buoyancy-dominated structure will 

also be characterized by significant secondary velo- 
cities in the core. Such a result is seen to be compatible 

with the numerical results of Ou and Cheng 121, 
preceding significant thermal stratification, as dis- 

cussed in the previous section. 
Finally, it should be noted that the analysis of Yao 

[3] represents the first attempt, for the present con- 
figuration. at predicting the effects of natural con- 

vection upon the axial pressure gradient, an issue 
which is not addressed by either [I] or [2]. Although 

no simple task, it appears that this problem will be 
most readily resolved by extending the finite-difference 
calculation of [2] to include the axial force balance. In 
this regard, it is noted that the recent work by 

Abdelmeguid and Spalding [lo] indicates that such a 
numerical capability is at hand; however, even in their 
calculation, which is for the developing turbulent 

mixed convection in a uniform-heat-flux pipe (hori- 
zontal. vertical or inclined), it is found necessary to 
neglect the radial and 4 dependence of the axial 

pressure gradient. 

4. COMPARISON WITH EXPERIMENTAL RESULTS 

Shown in Fig. 3 is a comparison between the 
theoretical results from [l] and [2] and the experimen- 
tal results of Oliver [6], Brown and Thomas [S] and 
Depew and August [7]. In particular, the solid and 
dashed curves in Fig. 3 are the same as in Fig. 1, being 

based upon equations (2.2) and (2.5), respectively ; on 
the other hand, the long-short curve in Fig. 3 cor- 

responds to the following least-square fitting of the 
results from [Z], as shown in Fig. 1 for r~ > 0.7: 

where 

D, = 0.00369, 0.80669, -0.31435, 

0.066911, -0.0073590, 0.00032559 (4.2) 

for n = 0 - 5. Following the standard Sieder- Tate 
empiricism, the data points have been processed by 
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Fro. 3. Comparison of theory with data of Ofiver [water (A), ethyl alcohol (m) and 80/20 glycerol water 
(‘I)], Brown & Thomas [water (+)I and Depew & August [water (A) and ethyl alcohol (a)]. Solid curve is 
based upon (2.2), dashed curve upon (2.5) and long-short curve upon (4.1). The abscissa and ordinate for data 

are, respectively, CQ and (A7’,/LST),., @,J~,)“.14. 

evaluating all physical properties at the average bulk 
temperature, T, = To + *AT,, and multiplying the 
measured AT*/AT by the factor (c~,,./p,)~.~~. In general, 
it is seen that the data compare quite well with the 
theory. In fact, relative to a composite result based 
upon (2.2) for (T < 0.7 and upon (4.1) for 0.7 < u < 6.0, 
the RMS deviation of the various data shown in Fig. 3 
(excluding the two points beyond 6.0) is as follows : 9% 

(A), 15% (H), 15% (V), 7% (+X 8% (A) and 14% (Cl). 
On the basis of the above, it would seem that the 

present theory can fairly well describe buoyancy- 
dominated convective heat transfer for large-prandtl- 
number fluids in isothermal horizontal tubes. That is, 
provided (GrPr)“4 and Pr are large, and rr lies in the 
range shown in Fig. 3, the bulk-temperature rise would 
be expected to correlate well with the composite curve 
based upon (2.2) and (4.1). In particular, for the 
experimental points shown in Fig. 3, (GrPr)‘j4 ranges 
from as low as z 7 in the glycerol-water data of [6] to 
as high as ~45 in the water results from ES]. Further, 
Pr ranges from as low as x4 in [5] to as high as x 500 
for the glycerol-water data in [6]. The data include 
both the heated-wall ([6]) and cooled-wall ([5-71) 
cases and both fully-developed ([6] and [7]) and 
uniform ([S]) inlet-velocity conditions. 

It is indicated in [l], however, that the oil data of 
Kern and Othmer [l l] do not correlate well with the 
theory. In this case, (GrPr)“” ranged from s 17 to 120 
with Pr lying between x35 and 1700. Except for the 
data for which (GrPr)‘14 c 30, the results in [l l] tend 
to lie 30-50% below the theory. Although one com- 
plicating factor in this case is the possibility of an 
unstable flow asstiated with the larger (GrPr)‘” 
values (note: Gr is here based upon tube radius)-in 

fact, Kern and Othmer noted that their results were 
highly susceptible to external disturbances (see p. 526 
of [Ill)-the fact that the present laminar theory 
overpredicts the heat-transfer rate seems to militate 
against the possibility of turbulence. Another cause of 
discrepancy with the theory could be a large value of 
(GrPr}s’4/(~ePr)2 which, according to [9] and the 
discussion at the end of Section 2 above, might lead to 
a significant change in the flow structure due to a 
modulation in the axial velocity arising from buoyancy 
effects upon the axial pressure gradient. In this regard, 
it is noted that the data in [l l] include runs for which 
the above parameter is as large as 2000 ; however, there 
are also runs which exhibit the same significant 
deviation from the present theory but for which the 
above parameter is much smaller than one. (For 
comparison, this parameter gets as large as 125 for the 
data shown in Fig. 3.) Accordingly, the discrepancy 
with the data in [ 1 l] remains unresolved although one 
~nt~buting factor may be the severe heating con- 
ditions, T, - To ranging between 125 and 22o”C, with 
the associated large variations in the oil viscosity. This 
effect will be considered further in a separate 
investigation. 

In closing, it is interesting to note that although the 
present theory has been based upon the ~s~ption of 
a large Prandtl number, an analysis of the correspond- 
ing experimental data obtained by Jackson et al. [8] in 
air indicates that (2.2) and (4.1) seem to correlate the 
results in this case also. That is, with a T, of loo”C, a 
detailed analysis of the results presented in Fig. 3 of [S] 
indicates that To was ~33°C and (GrPr)“4 x 28 (in 
present notation) with the bulk-temperature measure- 
ments lying roughly 10% below (2.2) and (4.1). A more 
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detailed pr~entation of these and other experimental 
results will be given in a future communication. 

6 
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CONVECTION MIXTE DANS UN TUBE HORIZONTAL ET ISOTHERME: QUELQUES 
THEORIES RECENTES 

RCumti- Une comparaison est faite entre une pr&dente analyse par l’auteur et des etudes theoriques plus 
recentes sur la convection mixte dans un tube isotherme et horizontal. II est encore degage que le paramttre 
pour determiner l’elevation de la temperature moyenne sous des conditions dominies par les forces 
d’Archimede est donni par la racine quatrieme du nombre de Rayleigh divise par le nombre de Graetz. La 
theorie s’accorde avec les don&es existantes dans une moyenne quadratique de 8 y0 pour l’eau, de 15 y/, pour 
l’alcool tthylique et le melange 80/20 de glycerol et d’eau. Bien que eela soit obtenu pour un Ruide a grand 
nombre de Prandtl, on montre que la theorie peut aussi bien d&ire convenabiement les don&es connues 

pour l’air. 

GEMISCHTE KONVEKTION IN EINEM ISOTHERMEN HORIZONTALEN ROHR : EINIGE 
NEUERE THEORIEN 

Z~~rnrn~nfa~~g-Es wird ein Vergleich zwischen einer friiheren Analyse des Autors und neueren 
theoretischen Untersuchungen der gemischten Konvektion in einem isothermen horizontalen Rohr 
durchgefiihrt. Dabei bestatigt sich wieder, daB der wesentliche Parameter zur Bestimmung der Zunahme der 
Mitteltemperatur unter von Auftrieb bestimmten Bedingungen durch die vierte Wurzel aus der Raleigh- 
Zahl, dividiert durch die Graetz-Zahl, gegeben ist. Es wird gezeigt, daR durch die Theorie vorliegende Daten 
mit einer mittleren quadratischen Abweichung von 8 “/fur Wasser und von 15 % fur Athylalkohol und 80/20 
Glyzer~n-Waster-Mi~hungen wiedergege~n werden. Obwohi die Theorie fiir Fluide mit groBer Prandtl- 
Zahl abgeleitet wurde, zeigte sich, daf.3 sie gleichermal3en verfiigbare Daten fiir Luft beschreiben kann. 

CMEIlIAHHAIf KOHBEKHMR B M30TEPMMYECKOZi FOPM30HTAJlbHOH TPYBE 
PxA HOBbIX TEOPMii 

AHHOTPUIB- FlpoBeaeHo cpaeHesiae biexfiy MeronoM, paeee npeano~eHHbrh4 ~BT~~oM, w Gonee 

no3~"~~~ Teo~r~YecK~MH ~Ccne~oBa~~~M~ cMe~a~iH0~ Ko~BeK~~~ B ~3oTe~M~qecKo~ roptr3oit- 

TB.lIbHOii Tpy6e. Ewe pa3 nOKa3aH0, 910 OCHOBHOii ClapaMeTp. On~CbiBa~~H~ POCT ObeMHOii EM- 

TiepBTypbI B yCnOBWiX npeo6nanaHtlR CBn BbITanKWBBHWR, 0npenenseTcn KOpHeM YerBepToti CTeneHA 

~3 owowews wcen Penes A Fperua. IlpennaraeMbtir Meron o6o6maer nMeror.nnecs ,nauubre c TOY- 
HOCTbK) a0 8”” JWIll BOabl N 15”; +n_nx 3TAnoBoro cnwpTa u pacT6opa rnauepsHa B sone B COOTHO- 

tueHm 80/20. HecMo-rprr sia TO, YTO sfcnonb3oBanWcb nawbte NIR ~WJIKOCTH c 60nburFfM WWIOM 


